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Abstract - The performance of several error control coding 
schemes for a meteor burst channel is performed via analysis 
and simulation. These coding strategies are compared using 
the probability of successful transmission of a fixed size packet 
through a single burst as a performance measure. The coding 
methods are compared via simulation for several realizations 
of meteor burst. It is found that based on complexity and 
probability of success, fixed rate convolutional codes with soft 
decision Viterbi decoding provide better performance. 

I. Introduction 

As meteors are swept up by the Earth's atmosphere, they 
leave a trail of ionized particles capable of reflecting radio 
signals. As the trail of particles diffuses and recombines, the 
ability of the trail to reflect signals also disappears. The useful 
life of these meteor trails is limited to a few tenths of a second, 
sometimes up to a few seconds. The random, time-varying 
nature of the meteor burst channel makes its analysis and use 
very difficult. For the purpose of analysis, an adequate model 
has been devised and will be presented in detail in this paper. 
Meteor trails are classified as overdense and underdense, based 
on the electron line density of the trail. In the overdense trail, 
signals do not penetrate the trail but reflect off the trail itself, 
whereas for the underdense trail signals penetrate the trail and 
reflect off the individual electrons. For the purpose of 
simplicity and mathematical convenience, only underdense 
trails are considered here. The model presented here closely 
matches that of [ 11. As the underdense meteor trail disperses, 
the signal power reflected off the trail can be modeled as a 
decaying exponential given by 

Here R(t) is the time varying signal power, t is the channel time 
constant, and q is a random variable representing the initial 
electron line density of the trail. K is a scaling constant. K and 
t are considered deterministic and depend on the 
transmitterheceiver geometry, antenna gains, etc [2] [3]. 
Typical trail durations ate from 0.2 to 1 second [4]. The 
bandwidth of the meteor burst channel is physically limited by 
multipath to be about 1Mhz. However, the FCC would 
typically limit the bandwidth to 20khz. The main objective 
in this paper will be to maximize the probability of successfully 
transmitting a fixed size data packet over a burst. Since we are 
primarily interested in relative performance, we will consider 
two fixed examples and study the performance of the various 
coding schemes over these channels. The modulation format 

will be coherent BPSK at 1Ok bits per second and the channel 
bandwidth is 20khz. One channel considered will havet = 0.05 
seconds and a packet size of 1200 bits, and the other realization 
will havet = 0.3 secondswith apacket size of 2400 bits. Fixed 
rate BCH and Reed-solomon codes, followed by three different 
possible adaptive block coding techniques will be considered. 
Fixed rate convolutional coding with hard decision Viterbi 
decoding will also be treated. Simulation packages for BCH, 
Reed-Solomon and convolutional codes developed for this 
paper will be described. 

11. Simulation Package 

An extensive simulation package was developed to support 
the research in this paper. The software was written in C++ 
for execution on IBM PCs and compatibles. Routines to 
perform the encoding and decoding for BCH, Reed-Solomon, 
and convolutional codes with hard decision Viterbi decoding 
were developed. These routines are called from various 
software shells written to simulate the channel in question. For 
this paper, thechannel exhibited theexponential decay ofsignal 
to noise ratio and corresponding rise in probability of bit error 
characteristic in meteor burst communications. However, the 
channel can be quite general, involvingdeterministic or random 
channel fluctuations. Routines were written to implement the 
algorithms described in this paper, adaptively selecting the 
code rate based on the state of the channel. Some initial search 
algorithms were also written to locate optimum values for 
scaling constants and thresholds based on channel parameters 
for the adaptive block code algorithms considered. The search 
algorithms use lower bounds on the probability of successful 
packet transmission as described in section 111 and in [SI. 

111. Fixed Rate Linear Block Codes 

Using a coarse upper bound on the probability of packet 
error, a search was done over all reasonable block lengths and 
code rates to find the optimum fixed rate code for the given 
channel parameters. This search was performed for 
Reed-Solomon codes of block length n = 7,15,31, and 63, as 
well as BCH codes of length n = 31,63,127, and 255. Since 
the packet length is in general not divisible by the number of 
information bits, the final block is allowed to be of a different 
rate to maximize the probability of success. The simple upper 
bound used for this search is derived as follows. For coherent 
BPSK, the time varying probability of bit error for our channel 
is given by [6]: 

MILCOM '91 

43.6.1. 
CH2981-9/91/0000-1033 $1 .OO 0 1991 IEEE 1033 



where Q( ) is the Q function and NO is the background noise 
power. To arrive at a simple error bound on the individual 
blocks of the message, the worst case bit error probability for 
the entire block is considered. This would be the error 
probability a t  the end of the block. If the block period is 
expressed as Tblk, then the worst case bit error probability for 
block i is expressed as: 

(3) 

For block i there are ki information symbols and ti correctable 
symbol errors. The number of correctable errors is a function 
of the code used. For Reed- Solomon codes of length n = 2" - 
1, we have 

n -ki 
ti =- 

2 (4) 

For binary BCH codes of length n = 2" - 1, we have 

n - k i  
2 mti s- ( 5 )  

Now, for each block of the message an upper bound on the 
probability of block error is given by 

then if there are L total blocks in the message, the lower bound 
on probability of packet error is given by: 

L 

1 - 1  
p(success) = ,n (1  - bei) (7) 

This bound for initial searches of Reed-Solomon and BCH 
codes for the t = 0.3 second, 2400 bit packet channel is used 
to find the best fixed rate block code. For Reed-Solomon codes 
a (63,45) code was best and for BCH codes (255,187) codes 
was best. These codes were then simulated and the results are 
shown in figure 1. For the t = 0.05 second, 1200 bit packet 
channel a (31,27) Reed-Solomon and a (127,120) BCH code 
were best. These codes were simulated and the results shown 
in figure 2. - 
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Figure 1. Probabilty of Success versus s/R for for six coding 
schemes (t = 0.3,2400 bits, coherent BPSK) 
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Figure 2. Probabilty of Success versus S / R  for for six coding 

IV. Adaptive Block Codes 

Several adaptive coding strategies are next considered. The 
first and second methods considered select the number of 
information symbols ki for each block based on the signal to 
noise ratio during that block. The signal to noise ratio of the 
link would be available to the transmitter in a protocol where 
the receiver sends a probe signal. The signal to noise ratio 
could be determined at the transmitter by the level of the probe 
signal. The actual selection criteria for ki is what differs 
between the first and second method. The third was introduced 
by Pursley and Sandberg [ 5 ] ,  which actually precomputes the 
optimum number of blocks, L, and the set of k's for a given 
initial signal to noise ratio, channel time constant, modulation 
format, and type of code used. 

IV-A. Channel Capacity Rate Adapting 

The channel capacity rate adapting (CCRA) method is 
designed to keep the information transmission proportional to 
the theoretical channel capacity while channel bandwidth is 
kept constant. From Shannon, the time varying channel 
capacity is given by [7]: 

schemes (t = 0.05,1200 bits, coherent BPSK) 

C(I) = B  log 1 +- { Y }  
where B is the channel bandwidth. To keep the number of 
information bits per second proportional to C(t), we have 

(9) 

where a is a scaling constant. Presumably, a is a figure of 
merit for the block code used. The closer a is to 1, the closer 
the coding scheme approaches theoretical channel capacity. 
Using the packet error bound described in section 111, we 
performed a search of BCH and Reed-Solomon codes for the 
t = 0.05,1200 bit length channel and thet  = 0.3,2400 bit length 
channel. The search was for the best block length n and the 
best value for a. The optimum scale factor, a, turns out to 
depend on the initial signal to noise ratio and the block code 
used. Note that for the final block, the value of k is chosen to 
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be the smallest such that the remaining information bits in the 
packet are sent. For the t = 0.3 channel, the best BCH block 
length was 127, while for Reed-Solomon codes, the best block 
length was 63. These codes were simulated and the results are 
shown in figure 1. For the t = 0.05 channel, the best BCH block 
length was 127. At this time, the search for the best 
Reed-Solomon is not complete. Thesimulation resultsfor these 
codes are shown in figure 2. 

IV-B. Block Error Rate Adapting 

The block error rate adapting (BERA) method is designed to 
keep each block error probability bei below some 
predetermined threshold, V. To make the implementation 
practical, we choose to make the upper bound on block error 
to be below V. Therefore, the number of information bits ki 
of each block is chosen such that 

Again, the bound described in section 111 was used to search 
for the best block length and threshold V for BCH and 
Reed-Solomon codes. It is not surprising that the optimum 
threshold V increases as the initial signal to noise ratio 
increases. For the T = 0.3 channel, the best BCH block length 
was 127. The Reed-Solomon code did not perform well and 
was excluded. These codes were simulated and the results are 
shown in figure 1. For the t = 0.05 channel, the best BCH block 
length was 127, while the search for a suitable Reed-Solomon 
was unsuccessful. The simulation results for these codes are 
shown in figure 2. 

IV-C. The PursleySandberg Algorithm 

Pursley and Sandberg [6] developed an iterative algorithm 
to compute the optimum number of blocks and number of 
information symbols for each block based on the properties of 
the probability of block error for singly extended 
Reed-Solomon codes. The property is that the log of bei as a 
function of the number of information symbols is concave. 
That is, log(bei(k)) is a concave function of k. In their paper, 
Pursley and Sandberg used a n = 32 singly extended 
Reed-Solomon code, noncoherent 32-ary FSK signaling at 
3200 symbols per second. Their packet length was 700 bits. 
They recorded probability of success for channels with t = 0.1 
and t = 0.5 seconds. Using the same channel configuration, 
we compared the CCRA and BERA methods described in 
sections IV-A and IV-B to the Pursley-Sandberg method. The 
results are shown in figures 3 and 4 and tables 1 through 6. 

Table 1. Packet configuration, t - 0.5, R(O)/NO = 1 db 

Table 2. Packet Configuration, t= 0.5, R(O)/NO = 1.5 db 

Table 3. Packet anfiguration, t= 0.5, R(O)/NO = 2 db 

Table 4. Packet anfiguration, t= 0.5, R(O)/NO = 3 db 

Table 5. Packet Configuration, t= 0.1, R(O)/NO = 4.6 db 

Table 6. Packet Configuration, t= 0.1, R(O)/NO = 7 db 

................................... 

............................... 

................................................................. 

* Pursley-Sandberg + CCRA RS n=32 * BEW RS n=32 

Figure 3. Probabilty of Success versus S / R  for for three 
coding schemes (t = 0.5,700 bits, noncoherent 32 
FSK) 

43.6.3. 
1035 



1 

a 
Lz g 01 

il 
- 

2 

0 01 
45 5 55 6 6 5  7 

SR\I Ratio (dB) 

+ Pursley-Sandberg -+ CCRA RS n=32 * BERA RS n=32 

Figure 4. Probabilty of Success versus S / R  for for three 
coding schemes (t = 0.1, 700 bits, noncoherent 32 
FSK) 

IV-D. Summary of Adaptive Bock Codes 

The Pursley-Sandberg method is the optimum adaptive block 
coding scheme in terms of probability of success for the 
assumed channel model. However, since the number of blocks 
L and the number of information symbols per block are 
precomputed at the beginning of the burst, any deviation in the 
actual channel from the model used to compute the L and k's 
results in suboptimum performance. With the methods of 
sections IV-A and IV-B, a bit more robustness to channel 
fluctuations is inherent. The probability of success recorded 
inthispaperwere basedon themodelofequation(1). However, 
since the actual value of ki depends on the signal to noise ratio 
during that block, deviations from the model of equation 1 may 
be adapted to. In addition, the algorithm to compute the Land 
k's is considerably more complex than either the CCRA or 
BERA methods. 

V. Convolutional Coding 

A binary convolutional code of rate 1/2 and constraint length 
7 was simulated as well. In this case the packet was padded at 
the end with a number of zeroes equal to the decoding depth 
to flush the data from the decoder. The results are shown in 
figures 1 and 2. 

V. Conclusion 

Although the simulations performed for convolutional codes 
with hard decision Viterbi decoding were limited to rate 1/2, 
k=7, it is clear that in general they would be a better choice. 
Only for small channel time constants with high initial signal 
to noise ratios did the adaptive block codes outperform the 
convolutional code. However, perhaps a rate 2/3 or 3/4 code 
would perform betterthantheblockcodeseven in thissituation. 
Also, we have not considered the coding gain advantage of soft 
decision decoding, widely available on many commercial 
convolutional decoding chips, but impractical for block codes. 
In light of these issues and the implementation ease of 
convolutional codes verses the complexity of adaptive block 
codes makes convolutional coding a good choice for meteor 
burst communications systems. 
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